Anthropic Logo

Anthropic

Staff Software Engineer, AI Reliability Engineering

Sorry, this job was removed at 08:07 p.m. (PST) on Monday, May 19, 2025
Be an Early Applicant
In-Office
3 Locations
320K-485K Annually
In-Office
3 Locations
320K-485K Annually

Similar Jobs

2 Hours Ago
In-Office
4 Locations
165K-220K
Junior
165K-220K
Junior
Cloud • Information Technology • Machine Learning
Lead the API/IAM team at CoreWeave, focusing on authentication and authorization services. Mentor engineers, define product roadmaps, and ensure scalable architecture while enhancing production health.
Top Skills: AWSAzureCi/CdGCPGoPulumiPythonTerraformTypescript
2 Hours Ago
In-Office or Remote
2 Locations
60K-115K
Entry level
60K-115K
Entry level
Fintech • Payments • Financial Services
The Surveillance Analyst monitors market activity, identifies risks, analyzes trends, compiles reports, and supports customer onboarding to mitigate financial risks.
Top Skills: SQL
2 Hours Ago
Hybrid
Liberty, NY, USA
64K-72K Annually
Junior
64K-72K Annually
Junior
AdTech • Consumer Web • Digital Media • eCommerce • Marketing Tech
The Commerce Staff Writer creates and maintains beauty and fashion content, collaborating with teams for product testing and optimization while writing numerous articles each month.
Top Skills: Seo
About Anthropic

Anthropic’s mission is to create reliable, interpretable, and steerable AI systems. We want AI to be safe and beneficial for our users and for society as a whole. Our team is a quickly growing group of committed researchers, engineers, policy experts, and business leaders working together to build beneficial AI systems.

About the role

Anthropic is seeking talented and experienced Reliability Engineers, including Software Engineers and Systems Engineers with experience and interest in reliability, to join our team. We will be defining and achieving reliability metrics for all of Anthropic’s internal and external products and services. While significantly improving reliability for Anthropic’s services, we plan to use the developing capabilities of modern AI models to reengineer the way we work. This team will be a critical part of Anthropic’s mission to bring the capabilities of groundbreaking AI technologies to benefit humanity in a safe and reliable way.

Responsibilities:

  • Develop appropriate Service Level Objectives for large language model serving and training systems, balancing availability/latency with development velocity.
  • Design and implement monitoring systems including availability, latency and other salient metrics.
  • Assist in the design and implementation of high-availability language model serving infrastructure capable of handling the needs of millions of external customers and high-traffic internal workloads.
  • Develop and manage automated failover and recovery systems for model serving deployments across multiple regions and cloud providers.
  • Lead incident response for critical AI services, ensuring rapid recovery and systematic improvements from each incident
  • Build and maintain cost optimization systems for large-scale AI infrastructure, focusing on accelerator (GPU/TPU/Trainium) utilization and efficiency

You may be a good fit if you:

  • Have extensive experience with distributed systems observability and monitoring at scale
  • Understand the unique challenges of operating AI infrastructure, including model serving, batch inference, and training pipelines
  • Have proven experience implementing and maintaining SLO/SLA frameworks for business-critical services
  • Are comfortable working with both traditional metrics (latency, availability) and AI-specific metrics (model performance, training convergence)
  • Have experience with chaos engineering and systematic resilience testing
  • Can effectively bridge the gap between ML engineers and infrastructure teams
  • Have excellent communication skills.

Strong candidates may also:

  • Have experience operating large-scale model training infrastructure or serving infrastructure (>1000 GPUs)
  • Have experience with one or more ML hardware accelerators (GPUs, TPUs, Trainium, e.g.)
  • Understand ML-specific networking optimizations like RDMA and InfiniBand.
  • Have expertise in AI-specific observability tools and frameworks
  • Understand ML model deployment strategies and their reliability implications
  • Have contributed to open-source infrastructure or ML tooling

Deadline to apply: None. Applications will be reviewed on a rolling basis. 

The expected salary range for this position is:

Annual Salary:
$320,000$485,000 USD
Logistics

Education requirements: We require at least a Bachelor's degree in a related field or equivalent experience.
Location-based hybrid policy:
Currently, we expect all staff to be in one of our offices at least 25% of the time. However, some roles may require more time in our offices.

Visa sponsorship: We do sponsor visas! However, we aren't able to successfully sponsor visas for every role and every candidate. But if we make you an offer, we will make every reasonable effort to get you a visa, and we retain an immigration lawyer to help with this.

We encourage you to apply even if you do not believe you meet every single qualification. Not all strong candidates will meet every single qualification as listed.  Research shows that people who identify as being from underrepresented groups are more prone to experiencing imposter syndrome and doubting the strength of their candidacy, so we urge you not to exclude yourself prematurely and to submit an application if you're interested in this work. We think AI systems like the ones we're building have enormous social and ethical implications. We think this makes representation even more important, and we strive to include a range of diverse perspectives on our team.

How we're different

We believe that the highest-impact AI research will be big science. At Anthropic we work as a single cohesive team on just a few large-scale research efforts. And we value impact — advancing our long-term goals of steerable, trustworthy AI — rather than work on smaller and more specific puzzles. We view AI research as an empirical science, which has as much in common with physics and biology as with traditional efforts in computer science. We're an extremely collaborative group, and we host frequent research discussions to ensure that we are pursuing the highest-impact work at any given time. As such, we greatly value communication skills.

The easiest way to understand our research directions is to read our recent research. This research continues many of the directions our team worked on prior to Anthropic, including: GPT-3, Circuit-Based Interpretability, Multimodal Neurons, Scaling Laws, AI & Compute, Concrete Problems in AI Safety, and Learning from Human Preferences.

Come work with us!

Anthropic is a public benefit corporation headquartered in San Francisco. We offer competitive compensation and benefits, optional equity donation matching, generous vacation and parental leave, flexible working hours, and a lovely office space in which to collaborate with colleagues.

HQ

Anthropic San Francisco, California, USA Office

548 Market St, San Francisco, California, United States, 94104

What you need to know about the San Francisco Tech Scene

San Francisco and the surrounding Bay Area attracts more startup funding than any other region in the world. Home to Stanford University and UC Berkeley, leading VC firms and several of the world’s most valuable companies, the Bay Area is the place to go for anyone looking to make it big in the tech industry. That said, San Francisco has a lot to offer beyond technology thanks to a thriving art and music scene, excellent food and a short drive to several of the country’s most beautiful recreational areas.

Key Facts About San Francisco Tech

  • Number of Tech Workers: 365,500; 13.9% of overall workforce (2024 CompTIA survey)
  • Major Tech Employers: Google, Apple, Salesforce, Meta
  • Key Industries: Artificial intelligence, cloud computing, fintech, consumer technology, software
  • Funding Landscape: $50.5 billion in venture capital funding in 2024 (Pitchbook)
  • Notable Investors: Sequoia Capital, Andreessen Horowitz, Bessemer Venture Partners, Greylock Partners, Khosla Ventures, Kleiner Perkins
  • Research Centers and Universities: Stanford University; University of California, Berkeley; University of San Francisco; Santa Clara University; Ames Research Center; Center for AI Safety; California Institute for Regenerative Medicine

Sign up now Access later

Create Free Account

Please log in or sign up to report this job.

Create Free Account