Prime Intellect Logo

Prime Intellect

Applied Research - RL & Agents

Reposted 4 Days Ago
Be an Early Applicant
In-Office
San Francisco, CA
100K-150K Annually
Senior level
In-Office
San Francisco, CA
100K-150K Annually
Senior level
Develop and implement advanced reinforcement learning methods and distributed systems for AI agents. Collaborate with customers to understand needs and create tailored solutions.
The summary above was generated by AI

Building Open Superintelligence Infrastructure
Prime Intellect is building the open superintelligence stack - from frontier agentic models to the infra that enables anyone to create, train, and deploy them. We aggregate and orchestrate global compute into a single control plane and pair it with a frontier open post-training stack: environments, evals, sandboxes, and high-performance training infrastructure for RL, SFT, and more. We enable researchers, startups and enterprises to run end-to-end reinforcement learning at frontier scale, adapting models to real tools, workflows, and deployment contexts.

We recently raised $15mm in funding (total of $20mm raised) led by Founders Fund, with participation from Menlo Ventures and prominent angels including Andrej Karpathy (Eureka AI, Tesla, OpenAI), Tri Dao (Chief Scientific Officer of Together AI), Dylan Patel (SemiAnalysis), Clem Delangue (Huggingface), Emad Mostaque (Stability AI) and many others.


Role Impact

This is a role at the intersection of cutting-edge RL/post-training methods and applied agent systems. You’ll have a direct impact on shaping how advanced models are aligned, deployed, and used in the real world by:

  • Advancing Agent Capabilities: Designing and iterating on next-generation AI agents that tackle real workloads—workflow automation, reasoning-intensive tasks, and decision-making at scale.

  • Building Robust Infrastructure: Developing the systems and frameworks that enable these agents to operate reliably, efficiently, and at massive scale.

  • Bridge Between Applications & Research: Translate ambiguous objectives into clear technical requirements that guide product and research priorities.

  • Prototype in the Field: Rapidly design and deploy agents, evals, and harnesses for real-world tasks to validate solutions.

Application-Driven Research & Infrastructure

  • Shape the direction and feature set for verifiers, the Environments Hub, training services, and other research platform offerings.

  • Build high‑quality examples, reference implementations, and “recipes” that make it easy for others to extend the stack.

  • Prototype agents and eval harnesses tailored to real-world use cases and external systems.

  • Pair with technical end‑users (research teams, infra‑heavy customers, open‑source contributors) to design environments, evals, and verifiers that reflect real workloads.

Post-training & Reinforcement Learning

  • Design and implement novel RL and post-training methods (RLHF, RLVR, GRPO, etc.) to align large models with domain-specific tasks.

  • Build evaluations and harnesses and to measure reasoning, robustness, and agentic behavior in real-world workflows.

  • Prototype multi-agent and memory-augmented systems to expand capabilities for downstream applications.

  • Experiment with post-training recipes to optimize downstream performance.

Agent Development & Infrastructure

  • Rapidly prototype and iterate on AI agents for automation, workflow orchestration, and decision-making.

  • Extend and integrate with agent frameworks to support evolving feature requests and performance requirements.

  • Architect and maintain distributed training/inference pipelines, ensuring scalability and cost efficiency.

  • Develop observability and monitoring (Prometheus, Grafana, tracing) to ensure reliability and performance in production deployments.

Requirements
  • Strong background in machine learning engineering, with experience in post-training, RL, or large-scale model alignment.

  • Experience with agent frameworks and tooling (e.g. DSPy, LangGraph, MCP, Stagehand).

  • Familiarity with distributed training/inference frameworks (e.g., vLLM, sglang, Accelerate, Ray, Torch).

  • Track record of research contributions (publications, open-source contributions, benchmarks) in ML/RL.

  • Passion for advancing the state-of-the-art in reasoning and building practical, agentic AI systems.

  • Strong technical writing abilities (documentation, blogs, papers) and research taste.

  • Eagerness to drive collaborations with external partners and engage with the broader open-source community.

Nice-to-Haves
  • Experience with web programming (React, TypeScript, Next.js).

  • Experience running LLM evaluations and/or synthetic data generation.

  • Experience deploying containerized systems at scale (Docker, Kubernetes, Terraform).

What We Offer
  • Competitive Compensation + equity incentives

  • Flexible Work (San Francisco or hybrid-remote)

  • Visa Sponsorship & relocation support

  • Professional Development budget

  • Team Off-sites & conference attendance


Growth Opportunity

You’ll join a mission-driven team working at the frontier of open, superintelligence infra. In this role, you’ll have the opportunity to:

  • Shape the evolution of agent-driven solutions—from research breakthroughs to production systems used by real customers.

  • Collaborate with leading researchers, engineers, and partners pushing the boundaries of RL and post-training.

  • Grow with a fast-moving organization where your contributions directly influence both the technical direction and the broader AI ecosystem.

If you’re excited to move fast, build boldly, and help define how agentic AI is developed and deployed, we’d love to hear from you.

Ready to build the open superintelligence infrastructure of tomorrow?
Apply now to help us make powerful, open AGI accessible to everyone.

Top Skills

Accelerate
Distributed Training
Docker
Grafana
Grpo
Kubernetes
Machine Learning
Prometheus
Ray
Reinforcement Learning
Rlhf
Rlvr
Sglang
Terraform
Vllm
HQ

Prime Intellect San Francisco, California, USA Office

San Francisco, CA, United States

Similar Jobs

54 Minutes Ago
In-Office or Remote
2 Locations
130K-280K Annually
Senior level
130K-280K Annually
Senior level
Artificial Intelligence • Software • Automation
The Account Executive will identify potential customers, develop outbound strategies, manage sales processes, and collaborate cross-functionally while building the sales team.
Top Skills: SaaS
An Hour Ago
Hybrid
Los Angeles, CA, USA
23-31 Hourly
Entry level
23-31 Hourly
Entry level
Fintech • Financial Services
As an Associate Personal Banker, you'll build customer relationships, assist with account openings, and provide product solutions while following bank policies.
An Hour Ago
In-Office
San Francisco, CA, USA
99K-172K Annually
Senior level
99K-172K Annually
Senior level
Artificial Intelligence • Cloud • Consumer Web • eCommerce • Information Technology • Software
As a Senior Infrastructure Engineer, you'll design systems for web operations, apply SRE principles, and automate infrastructure using various programming languages and tools.
Top Skills: Amazon EcsAnsibleChefDockerElkGoKubernetesLightstepNew RelicNomadPrometheusPuppetPythonRubyScalaSentryTerraform

What you need to know about the San Francisco Tech Scene

San Francisco and the surrounding Bay Area attracts more startup funding than any other region in the world. Home to Stanford University and UC Berkeley, leading VC firms and several of the world’s most valuable companies, the Bay Area is the place to go for anyone looking to make it big in the tech industry. That said, San Francisco has a lot to offer beyond technology thanks to a thriving art and music scene, excellent food and a short drive to several of the country’s most beautiful recreational areas.

Key Facts About San Francisco Tech

  • Number of Tech Workers: 365,500; 13.9% of overall workforce (2024 CompTIA survey)
  • Major Tech Employers: Google, Apple, Salesforce, Meta
  • Key Industries: Artificial intelligence, cloud computing, fintech, consumer technology, software
  • Funding Landscape: $50.5 billion in venture capital funding in 2024 (Pitchbook)
  • Notable Investors: Sequoia Capital, Andreessen Horowitz, Bessemer Venture Partners, Greylock Partners, Khosla Ventures, Kleiner Perkins
  • Research Centers and Universities: Stanford University; University of California, Berkeley; University of San Francisco; Santa Clara University; Ames Research Center; Center for AI Safety; California Institute for Regenerative Medicine

Sign up now Access later

Create Free Account

Please log in or sign up to report this job.

Create Free Account