Design and build backend systems for credit insights products, collaborating with various teams, and mentoring junior engineers.
We believe that the way people interact with their finances will drastically improve in the next few years. We’re dedicated to empowering this transformation by building the tools and experiences that thousands of developers use to create their own products. Plaid powers the tools millions of people rely on to live a healthier financial life. We work with thousands of companies like Venmo, SoFi, several of the Fortune 500, and many of the largest banks to make it easy for people to connect their financial accounts to the apps and services they want to use. Plaid’s network covers 12,000 financial institutions across the US, Canada, UK and Europe. Founded in 2013, the company is headquartered in San Francisco with offices in New York, Washington D.C., London and Amsterdam.
The Network Enablement team’s mission is to amplify Plaid’s network effects by fostering trust and sharing intelligence with data partners.
We build Trust & Fraud Insights (real-time Protect model scoring, two-way APIs/webhooks, and investigation tooling), Bank Intelligence (ML driven retention and account-primacy metrics and scalable batch pipelines), and the ml/data foundations (graph and sequence-embedding models plus unified feature pipelines and feature-store patterns).
We own productionization and reliability for data partner facing ML — low-latency scoring, offline↔online parity, observability and drift detection, PII-safe handling and auditability — and collaborated closely with MLE, DS, Data Platform, Fraud, Foundational Modeling, Product, and Privacy to scale network intelligence.
On this team you will build and operate the ML infrastructure and product services that enable trust and intelligence across Plaid’s network. You’ll own feature engineering, offline training and batch scoring, online feature serving, and real-time inference so model outputs directly power partner-facing fraud & trust products and bank intelligence features. You will integrate inference into product logic (APIs, feature flags, backend flows), build reproducible pipelines and model CI/CD, and ensure observability, reproducibility, and compliance as you scale our network capabilities. You’ll partner with Product, ML/Data Platform, Fraud, Foundational Modeling, MLE, DS, and Privacy to ship auditable, reliable ML solutions that move product KPIs
Responsibilities
- Embed model inference into Network Enablement product flows and decision logic (APIs, feature flags, backend flows).
- Define and instrument product + ML success metrics (fraud reduction, retention lift, false positives, downstream impact).
- Design and run experiments and rollout plans (backtesting, shadow scoring, A/B tests, feature-flagged releases) to validate product hypotheses.
- Build and operate offline training pipelines and production batch scoring for bank intelligence products.
- Ship and maintain online feature serving and low-latency model inference endpoints for real-time partner/bank scoring.
- Implement model CI/CD, model/version registry, and safe rollout/rollback strategies.
- Monitor model/data health: drift/regression detection, model-quality dashboards, alerts, and SLOs targeted to partner product needs.
- Ensure offline and online parity, data lineage, and automated validation / data contracts to reduce regressions.
- Optimize inference performance and cost for real-time scoring (batching, caching, runtime selection).Ensure fairness, explainability and PII-aware handling for partner-facing ML features; maintain auditability for compliance.
- Partner with platform and cross-functional teams to scale the ML/data foundation (graph features, sequence embeddings, unified pipelines).
- Mentor engineers and document team standards for ML productization and operations.
Qualifications
- Must-haves:
- Strong software engineering skills including systems design, APIs, and building reliable backend services (Go or Python preferred).
- Production experience with batch and streaming data pipelines and orchestration tools such as Airflow or Spark.
- Experience building or operating real-time scoring and online feature-serving systems, including feature stores and low-latency model inference.
- Experience integrating model outputs into product flows (APIs, feature flags) and measuring impact through experiments and product metrics.
- Experience with model lifecycle and operations: model registries, CI/CD for models, reproducible training, offline & online parity, monitoring and incident response.
- Nice to have:
- Experience in fraud, risk, or marketing intelligence domains.
- Experience with feature-store products (Tecton / Chronon / Feast / internal) and unified pipelines.
- Experience with graph frameworks, graph feature engineering, or sequence embeddings.
- Experience optimizing inference at scale (Triton/ONNX/quantization, batching, caching).
Our mission at Plaid is to unlock financial freedom for everyone. To support that mission, we seek to build a diverse team of driven individuals who care deeply about making the financial ecosystem more equitable. We recognize that strong qualifications can come from both prior work experiences and lived experiences. We encourage you to apply to a role even if your experience doesn't fully match the job description. We are always looking for team members that will bring something unique to Plaid!
Plaid is proud to be an equal opportunity employer and values diversity at our company. We do not discriminate based on race, color, national origin, ethnicity, religion or religious belief, sex (including pregnancy, childbirth, or related medical conditions), sexual orientation, gender, gender identity, gender expression, transgender status, sexual stereotypes, age, military or veteran status, disability, or other applicable legally protected characteristics. We also consider qualified applicants with criminal histories, consistent with applicable federal, state, and local laws. Plaid is committed to providing reasonable accommodations for candidates with disabilities in our recruiting process. If you need any assistance with your application or interviews due to a disability, please let us know at [email protected].
Please review our Candidate Privacy Notice here.
Top Skills
MySQL
Plaid San Francisco, California, USA Office
San Francisco, CA, United States, 94105
Similar Jobs
Financial Services
Lead complex software initiatives in digital banking, managing programs and projects, mitigating risks, and fostering stakeholder relationships to drive strategic goals.
Top Skills:
AgilePgmpPmp
Financial Services
Lead the adoption of Agile methodologies, mentor teams, drive transformation initiatives, and ensure high performance within the payments technology sector.
Top Skills:
Agile MethodologiesDesign ThinkingExtreme ProgrammingKanbanPdlcScrumSdlc
Information Technology • Productivity • Software • Infrastructure as a Service (IaaS)
The role involves mentoring, driving automation strategy, ensuring product quality, developing test frameworks, and collaborating across teams to enhance software quality assurance processes.
Top Skills:
AWSC++CircleCIDockerGatlingGoJavaJmeterKotlinPostgresRestassuredSeleniumTeamcityTestrigor
What you need to know about the San Francisco Tech Scene
San Francisco and the surrounding Bay Area attracts more startup funding than any other region in the world. Home to Stanford University and UC Berkeley, leading VC firms and several of the world’s most valuable companies, the Bay Area is the place to go for anyone looking to make it big in the tech industry. That said, San Francisco has a lot to offer beyond technology thanks to a thriving art and music scene, excellent food and a short drive to several of the country’s most beautiful recreational areas.
Key Facts About San Francisco Tech
- Number of Tech Workers: 365,500; 13.9% of overall workforce (2024 CompTIA survey)
- Major Tech Employers: Google, Apple, Salesforce, Meta
- Key Industries: Artificial intelligence, cloud computing, fintech, consumer technology, software
- Funding Landscape: $50.5 billion in venture capital funding in 2024 (Pitchbook)
- Notable Investors: Sequoia Capital, Andreessen Horowitz, Bessemer Venture Partners, Greylock Partners, Khosla Ventures, Kleiner Perkins
- Research Centers and Universities: Stanford University; University of California, Berkeley; University of San Francisco; Santa Clara University; Ames Research Center; Center for AI Safety; California Institute for Regenerative Medicine


