Databricks Logo

Databricks

Staff Software Engineer - GenAI Performance and Kernel

Reposted 16 Days Ago
Be an Early Applicant
In-Office
San Francisco, CA
191K-233K Annually
Senior level
In-Office
San Francisco, CA
191K-233K Annually
Senior level
Lead the development and optimization of GPU kernels for GenAI inference, focusing on performance improvements and mentorship of engineers.
The summary above was generated by AI

P-1285

About This Role

As a staff software engineer for GenAI Performance and Kernel, you will own the design, implementation, optimization, and correctness of the high-performance GPU kernels powering our GenAI inference stack. You will lead development of highly-tuned, low-level compute paths, manage trade-offs between hardware efficiency and generality, and mentor others in kernel-level performance engineering. You will work closely with ML researchers, systems engineers, and product teams to push the state-of-the-art in inference performance at scale.

What You Will Do
  • Lead the design, implementation, benchmarking, and maintenance of core compute kernels (e.g. attention, MLP, softmax, layernorm, memory management) optimized for various hardware backends (GPU, accelerators)
  • Drive the performance roadmap for kernel-level improvements: vectorization, tensorization, tiling, fusion, mixed precision, sparsity, quantization, memory reuse, scheduling, auto-tuning, etc.
  • Integrate kernel optimizations with higher-level ML systems
  • Build and maintain profiling, instrumentation, and verification tooling to detect correctness, performance regressions, numerical issues, and hardware utilization gaps
  • Lead performance investigations and root-cause analysis on inference bottlenecks, e.g. memory bandwidth, cache contention, kernel launch overhead, tensor fragmentation
  • Establish coding patterns, abstractions, and frameworks to modularize kernels for reuse, cross-backend portability, and maintainability
  • Influence system architecture decisions to make kernel improvements more effective (e.g. memory layout, dataflow scheduling, kernel fusion boundaries)
  • Mentor and guide other engineers working on lower-level performance, provide code reviews, help set best practices
  • Collaborate with infrastructure, tooling, and ML teams to roll out kernel-level optimizations into production, and monitor their impact
What We Look For
  • BS/MS/PhD in Computer Science, or a related field
  • Deep hands-on experience writing and tuning compute kernels (CUDA, Triton, OpenCL, LLVM IR, assembly or similar sort) for ML workloads
  • Strong knowledge of GPU/accelerator architecture: warp structure, memory hierarchy (global, shared, register, L1/L2 caches), tensor cores, scheduling, SM occupancy, etc.
  • Experience with advanced optimization techniques: tiling, blocking, software pipelining, vectorization, fusion, loop transformations, auto-tuning
  • Familiarity with ML-specific kernel libraries (cuBLAS, cuDNN, CUTLASS, oneDNN, etc.) or open kernels
  • Strong debugging and profiling skills (Nsight, NVProf, perf, vtune, custom instrumentation)
  • Experience reasoning about numerical stability, mixed precision, quantization, and error propagation
  • Experience in integrating optimized kernels into real-world ML inference systems; exposure to distributed inference pipelines, memory management, and runtime systems
  • Experience building high-performance products leveraging GPU acceleration
  • Excellent communication and leadership skills — able to drive design discussions, mentor colleagues, and make trade-offs visible
  • A track record of shipping performance-critical, high-quality production software
  • Bonus: published in systems/ML performance venues (e.g. MLSys, ASPLOS, ISCA, PPoPP), experience with custom accelerators or FPGA, experience with sparsity or model compression techniques


Pay Range Transparency

Databricks is committed to fair and equitable compensation practices. The pay range(s) for this role is listed below and represents the expected salary range for non-commissionable roles or on-target earnings for commissionable roles.  Actual compensation packages are based on several factors that are unique to each candidate, including but not limited to job-related skills, depth of experience, relevant certifications and training, and specific work location. Based on the factors above, Databricks anticipates utilizing the full width of the range. The total compensation package for this position may also include eligibility for annual performance bonus, equity, and the benefits listed above. For more information regarding which range your location is in visit our page here.


Local Pay Range
$190,900$232,800 USD

About Databricks

Databricks is the data and AI company. More than 10,000 organizations worldwide — including Comcast, Condé Nast, Grammarly, and over 50% of the Fortune 500 — rely on the Databricks Data Intelligence Platform to unify and democratize data, analytics and AI. Databricks is headquartered in San Francisco, with offices around the globe and was founded by the original creators of Lakehouse, Apache Spark™, Delta Lake and MLflow. To learn more, follow Databricks on Twitter, LinkedIn and Facebook.
Benefits
At Databricks, we strive to provide comprehensive benefits and perks that meet the needs of all of our employees. For specific details on the benefits offered in your region, please visit https://www.mybenefitsnow.com/databricks. 

Our Commitment to Diversity and Inclusion

At Databricks, we are committed to fostering a diverse and inclusive culture where everyone can excel. We take great care to ensure that our hiring practices are inclusive and meet equal employment opportunity standards. Individuals looking for employment at Databricks are considered without regard to age, color, disability, ethnicity, family or marital status, gender identity or expression, language, national origin, physical and mental ability, political affiliation, race, religion, sexual orientation, socio-economic status, veteran status, and other protected characteristics.

Compliance

If access to export-controlled technology or source code is required for performance of job duties, it is within Employer's discretion whether to apply for a U.S. government license for such positions, and Employer may decline to proceed with an applicant on this basis alone.

Top Skills

Cublas
Cuda
Cudnn
Cutlass
Llvm Ir
Nvidia Nsight
Nvprof
Onednn
Opencl
Perf
Triton
Vtune

Databricks San Francisco, California, USA Office

160 Spear Street, San Francisco, CA, United States, 94105

Similar Jobs

22 Minutes Ago
Hybrid
2 Locations
178K-313K Annually
Senior level
178K-313K Annually
Senior level
Artificial Intelligence • Cloud • Machine Learning • Mobile • Software • Virtual Reality • App development
Design, develop, test and maintain software solutions for devices, focusing on modem software and connectivity issues while ensuring performance and quality.
Top Skills: CC++IpTcpUdp
22 Minutes Ago
Hybrid
Los Angeles, CA, USA
133K-235K Annually
Senior level
133K-235K Annually
Senior level
Artificial Intelligence • Cloud • Machine Learning • Mobile • Software • Virtual Reality • App development
Lead and manage Account Management team, develop partnerships, optimize campaigns, analyze data, and mentor staff in a fast-paced sales environment.
Top Skills: ExcelKeynotePowerPointSnapchat Ads Manager
22 Minutes Ago
Hybrid
3 Locations
147K-259K Annually
Mid level
147K-259K Annually
Mid level
Artificial Intelligence • Cloud • Machine Learning • Mobile • Software • Virtual Reality • App development
The Product Manager will lead multiple product areas for Spectacles, focusing on payment platforms, cloud services, and collaboration with cross-functional teams to deliver integrated hardware/software products.
Top Skills: AIAr/Vr/Xr Device ExperienceCloudContent Distribution SystemsPayments SystemsPlatform Security

What you need to know about the San Francisco Tech Scene

San Francisco and the surrounding Bay Area attracts more startup funding than any other region in the world. Home to Stanford University and UC Berkeley, leading VC firms and several of the world’s most valuable companies, the Bay Area is the place to go for anyone looking to make it big in the tech industry. That said, San Francisco has a lot to offer beyond technology thanks to a thriving art and music scene, excellent food and a short drive to several of the country’s most beautiful recreational areas.

Key Facts About San Francisco Tech

  • Number of Tech Workers: 365,500; 13.9% of overall workforce (2024 CompTIA survey)
  • Major Tech Employers: Google, Apple, Salesforce, Meta
  • Key Industries: Artificial intelligence, cloud computing, fintech, consumer technology, software
  • Funding Landscape: $50.5 billion in venture capital funding in 2024 (Pitchbook)
  • Notable Investors: Sequoia Capital, Andreessen Horowitz, Bessemer Venture Partners, Greylock Partners, Khosla Ventures, Kleiner Perkins
  • Research Centers and Universities: Stanford University; University of California, Berkeley; University of San Francisco; Santa Clara University; Ames Research Center; Center for AI Safety; California Institute for Regenerative Medicine

Sign up now Access later

Create Free Account

Please log in or sign up to report this job.

Create Free Account