Stripe Logo

Stripe

Machine Learning Engineer, Payments ML Accelerator

Reposted 18 Days Ago
Be an Early Applicant
In-Office
3 Locations
Senior level
In-Office
3 Locations
Senior level
Develop advanced ML solutions to improve Stripe's payment products. Work on the ML lifecycle from research to deployment, collaborating with product teams.
The summary above was generated by AI
About Stripe

Stripe is a financial infrastructure platform for businesses. Millions of companies—from the world’s largest enterprises to the most ambitious startups—use Stripe to accept payments, grow their revenue, and accelerate new business opportunities. Our mission is to increase the GDP of the internet, and we have a staggering amount of work ahead. That means you have an unprecedented opportunity to put the global economy within everyone’s reach while doing the most important work of your career.

About the team

The Payments ML Accelerator team is developing foundational ML capabilities that drive innovation across Stripe's payment products. We build deep learning models that tackle Stripe's most complex payment challenges - from fraud detection to authorization optimization - and deliver measurable business impact. Our work combines advanced ML techniques with large-scale data infrastructure to enable rapid experimentation and seamless deployment of AI-powered solutions. As a central ML innovation hub, we work closely with product teams to identify high-impact opportunities and implement scalable solutions that can be leveraged across the organization.

What you'll do:

As a machine learning engineer on our team, you’ll develop advanced ML solutions that directly impact Stripe’s payment products and core business metrics. Your role will span the entire ML lifecycle, from research and experimentation to production deployment.

You’ll work on high-leverage problems that require innovation in modeling, optimization, and system design. Where possible, you’ll look beyond point solutions - designing approaches and architectures that are reusable, extensible, and serve as foundation models for future capabilities.

The role demands strong technical judgment, deep knowledge of modern ML methods, and the ability to translate ideas into systems that deliver measurable impact. You’ll partner with product and engineering teams to identify opportunities where ML can move the needle today while setting Stripe up for long-term success.

Responsibilities:
  • Design and deploy deep learning architectures and foundation models to address problems across key payment entities such as merchants, issuers, or customers
  • Identify high-impact opportunities, and drive the long-term ML roadmap through well-scoped high-leverage initiatives
  • Architect generalizable ML workflows to enable rapid scaling and optimized online performance
  • Deploy ML models online and ensure operational stability
  • Experiment with advanced ML solutions in the industry and ideate on product applications 
  • Explore cutting-edge ML techniques and evaluate their potential to solve business problems
  • Work closely with ML infrastructure teams to shape new platform capabilities
Who you are:

We are looking for ML Engineers who are passionate about using ML to improve products and delight customers. You have experience developing streaming feature pipelines, building ML models, and deploying them to production, even if it involves making substantial changes to backend code. You are comfortable with ambiguity, love to take initiative, and have a bias towards action. 

Minimum requirements
  • Minimum 7 years of industry experience doing end-to-end ML development on a machine learning team and bringing ML models to production 
  • Proficient in Python, Scala, and Spark
  • Proficient in deep learning and LLM/foundation models
Preferred qualifications
  • MS/PhD degree in quantitative field or ML/AI (e.g. computer science, math, physics, statistics)
  • Knowledge about how to manipulate data to perform analysis, including querying data, defining metrics, or slicing and dicing data to evaluate a hypothesis
  • Experience evaluating niche and upcoming ML solutions

Top Skills

Python
Scala
Spark

Stripe San Francisco, California, USA Office

510 Townsend St, San Francisco, CA, United States, 94103

Similar Jobs

17 Hours Ago
Hybrid
Seattle, WA, USA
38-67 Hourly
Mid level
38-67 Hourly
Mid level
Fintech • Financial Services
As a Branch Manager, you'll lead and develop a diverse team, ensure operational excellence, enhance customer experiences, and drive business growth while meeting regulatory requirements.
17 Hours Ago
Hybrid
Mill Creek, WA, USA
37-66 Hourly
Senior level
37-66 Hourly
Senior level
Fintech • Financial Services
The Senior Premier Banker will acquire new affluent customers, deepen relationships, resolve customer concerns, and manage risks while providing financial advice and services.
Top Skills: Finra Series 6Finra Series 63State Insurance Licensing
17 Hours Ago
Hybrid
Bellevue, WA, USA
23-31 Hourly
Junior
23-31 Hourly
Junior
Fintech • Financial Services
As a Personal Banker, you will deliver exceptional customer experiences, assist with account openings, and connect customers to appropriate banking products and services while adhering to compliance regulations.
Top Skills: Banking ProductsDigital Solutions

What you need to know about the San Francisco Tech Scene

San Francisco and the surrounding Bay Area attracts more startup funding than any other region in the world. Home to Stanford University and UC Berkeley, leading VC firms and several of the world’s most valuable companies, the Bay Area is the place to go for anyone looking to make it big in the tech industry. That said, San Francisco has a lot to offer beyond technology thanks to a thriving art and music scene, excellent food and a short drive to several of the country’s most beautiful recreational areas.

Key Facts About San Francisco Tech

  • Number of Tech Workers: 365,500; 13.9% of overall workforce (2024 CompTIA survey)
  • Major Tech Employers: Google, Apple, Salesforce, Meta
  • Key Industries: Artificial intelligence, cloud computing, fintech, consumer technology, software
  • Funding Landscape: $50.5 billion in venture capital funding in 2024 (Pitchbook)
  • Notable Investors: Sequoia Capital, Andreessen Horowitz, Bessemer Venture Partners, Greylock Partners, Khosla Ventures, Kleiner Perkins
  • Research Centers and Universities: Stanford University; University of California, Berkeley; University of San Francisco; Santa Clara University; Ames Research Center; Center for AI Safety; California Institute for Regenerative Medicine

Sign up now Access later

Create Free Account

Please log in or sign up to report this job.

Create Free Account