Anthropic Logo

Anthropic

Machine Learning Systems Engineer, RL Engineering

Reposted 2 Days Ago
Easy Apply
In-Office
3 Locations
300K-405K Annually
Mid level
Easy Apply
In-Office
3 Locations
300K-405K Annually
Mid level
The role involves building and improving systems for training AI models, focusing on algorithms and infrastructure for reinforcement learning. Responsibilities include enhancing performance, reliability, and usability of systems to support research.
The summary above was generated by AI
About Anthropic

Anthropic’s mission is to create reliable, interpretable, and steerable AI systems. We want AI to be safe and beneficial for our users and for society as a whole. Our team is a quickly growing group of committed researchers, engineers, policy experts, and business leaders working together to build beneficial AI systems.

About the role:

You want to build the cutting-edge systems that train AI models like Claude. You're excited to work at the frontier of machine learning, implementing and improving advanced techniques to create ever more capable, reliable and steerable AI. As an ML Systems Engineer on our Reinforcement Learning Engineering team, you'll be responsible for the critical algorithms and infrastructure that our researchers depend on to train models. Your work will directly enable breakthroughs in AI capabilities and safety. You'll focus obsessively on improving the performance, robustness, and usability of these systems so our research can progress as quickly as possible. You're energized by the challenge of supporting and empowering our research team in the mission to build beneficial AI systems. 

Our finetuning researchers train our production Claude models, and internal research models, using RLHF and other related methods. Your job will be to build, maintain, and improve the algorithms and systems that these researchers use to train models. You’ll be responsible for improving the speed, reliability, and ease-of-use of these systems.

You may be a good fit if you:
  • Have 4+ years of software engineering experience
  • Like working on systems and tools that make other people more productive
  • Are results-oriented, with a bias towards flexibility and impact
  • Pick up slack, even if it goes outside your job description
  • Enjoy pair programming (we love to pair!)
  • Want to learn more about machine learning research
  • Care about the societal impacts of your work
Strong candidates may also have experience with:
  • High performance, large scale distributed systems
  • Large scale LLM training
  • Python
  • Implementing LLM finetuning algorithms, such as RLHF
Representative projects:
  • Profiling our reinforcement learning pipeline to find opportunities for improvement
  • Building a system that regularly launches training jobs in a test environment so that we can quickly detect problems in the training pipeline
  • Making changes to our finetuning systems so they work on new model architectures
  • Building instrumentation to detect and eliminate Python GIL contention in our training code
  • Diagnosing why training runs have started slowing down after some number of steps, and fixing it
  • Implementing a stable, fast version of a new training algorithm proposed by a researcher

Deadline to apply: None. Applications will be reviewed on a rolling basis. 

The expected base compensation for this position is below. Our total compensation package for full-time employees includes equity, benefits, and may include incentive compensation.

Annual Salary:
$300,000$405,000 USD
Logistics

Education requirements: We require at least a Bachelor's degree in a related field or equivalent experience.
Location-based hybrid policy:
Currently, we expect all staff to be in one of our offices at least 25% of the time. However, some roles may require more time in our offices.

Visa sponsorship: We do sponsor visas! However, we aren't able to successfully sponsor visas for every role and every candidate. But if we make you an offer, we will make every reasonable effort to get you a visa, and we retain an immigration lawyer to help with this.

We encourage you to apply even if you do not believe you meet every single qualification. Not all strong candidates will meet every single qualification as listed.  Research shows that people who identify as being from underrepresented groups are more prone to experiencing imposter syndrome and doubting the strength of their candidacy, so we urge you not to exclude yourself prematurely and to submit an application if you're interested in this work. We think AI systems like the ones we're building have enormous social and ethical implications. We think this makes representation even more important, and we strive to include a range of diverse perspectives on our team.

How we're different

We believe that the highest-impact AI research will be big science. At Anthropic we work as a single cohesive team on just a few large-scale research efforts. And we value impact — advancing our long-term goals of steerable, trustworthy AI — rather than work on smaller and more specific puzzles. We view AI research as an empirical science, which has as much in common with physics and biology as with traditional efforts in computer science. We're an extremely collaborative group, and we host frequent research discussions to ensure that we are pursuing the highest-impact work at any given time. As such, we greatly value communication skills.

The easiest way to understand our research directions is to read our recent research. This research continues many of the directions our team worked on prior to Anthropic, including: GPT-3, Circuit-Based Interpretability, Multimodal Neurons, Scaling Laws, AI & Compute, Concrete Problems in AI Safety, and Learning from Human Preferences.

Come work with us!

Anthropic is a public benefit corporation headquartered in San Francisco. We offer competitive compensation and benefits, optional equity donation matching, generous vacation and parental leave, flexible working hours, and a lovely office space in which to collaborate with colleagues. Guidance on Candidates' AI Usage: Learn about our policy for using AI in our application process

Top Skills

Distributed Systems
Large Language Models
Machine Learning
Python
Reinforcement Learning
HQ

Anthropic San Francisco, California, USA Office

548 Market St, San Francisco, California, United States, 94104

Similar Jobs

An Hour Ago
Hybrid
3 Locations
103K-169K Annually
Senior level
103K-169K Annually
Senior level
AdTech • Digital Media • Internet of Things • Marketing Tech • Mobile • Retail • Software
The Operations Manager directs complex projects, implements operational strategies, monitors performance, manages resources, and ensures timely delivery of products while communicating with stakeholders.
Top Skills: MS OfficeMicrosoft ProjectSales Force
An Hour Ago
Hybrid
Bethpage, NY, USA
64K-106K Annually
Junior
64K-106K Annually
Junior
AdTech • Digital Media • Internet of Things • Marketing Tech • Mobile • Retail • Software
The Staff Accountant manages day-to-day accounting tasks, prepares journal entries, conducts reconciliations, and ensures compliance with GAAP standards.
Top Skills: Google DocsExcelOffice 365Oracle Applications
9 Hours Ago
Hybrid
2 Locations
144K-300K Annually
Senior level
144K-300K Annually
Senior level
Fintech • Financial Services
The role involves driving counterparty risk modeling, implementing PFE and XVA strategies, and collaborating with trading and risk stakeholders to ensure requirements are met and governance adhered to.
Top Skills: C++Python

What you need to know about the San Francisco Tech Scene

San Francisco and the surrounding Bay Area attracts more startup funding than any other region in the world. Home to Stanford University and UC Berkeley, leading VC firms and several of the world’s most valuable companies, the Bay Area is the place to go for anyone looking to make it big in the tech industry. That said, San Francisco has a lot to offer beyond technology thanks to a thriving art and music scene, excellent food and a short drive to several of the country’s most beautiful recreational areas.

Key Facts About San Francisco Tech

  • Number of Tech Workers: 365,500; 13.9% of overall workforce (2024 CompTIA survey)
  • Major Tech Employers: Google, Apple, Salesforce, Meta
  • Key Industries: Artificial intelligence, cloud computing, fintech, consumer technology, software
  • Funding Landscape: $50.5 billion in venture capital funding in 2024 (Pitchbook)
  • Notable Investors: Sequoia Capital, Andreessen Horowitz, Bessemer Venture Partners, Greylock Partners, Khosla Ventures, Kleiner Perkins
  • Research Centers and Universities: Stanford University; University of California, Berkeley; University of San Francisco; Santa Clara University; Ames Research Center; Center for AI Safety; California Institute for Regenerative Medicine

Sign up now Access later

Create Free Account

Please log in or sign up to report this job.

Create Free Account